

Taste is your Moat (Dylan Field of Figma)
Latent Space
What You'll Learn
- ✓Figma's initial mission was to close the gap between imagination and reality for designers, and now Figma Make is expanding that to a broader audience
- ✓Dylan's early exposure to AI and machine learning through conversations with mentors and colleagues sparked his interest in the potential of these technologies
- ✓Natural language is seen as the current interface for exploring the creative potential of AI, but Dylan envisions other more intuitive interfaces emerging in the future
- ✓The design and development process is becoming more blurred, with roles and stages overlapping, requiring tools that can support different ways of working
- ✓There is an open question around how much of a specification can be inferred versus needing to be explicitly coded
AI Summary
The episode discusses Figma's journey from focusing on helping designers bring their ideas to life, to now expanding into tools like Figma Make that aim to bridge the gap between design and code. The guest, Dylan Field, shares his early exposure to AI and machine learning, and how he sees natural language as the current interface for exploring the creative potential of these technologies. He also touches on the evolving nature of the design and development process, with roles and stages becoming more blurred, and the need to support different ways of working.
Key Points
- 1Figma's initial mission was to close the gap between imagination and reality for designers, and now Figma Make is expanding that to a broader audience
- 2Dylan's early exposure to AI and machine learning through conversations with mentors and colleagues sparked his interest in the potential of these technologies
- 3Natural language is seen as the current interface for exploring the creative potential of AI, but Dylan envisions other more intuitive interfaces emerging in the future
- 4The design and development process is becoming more blurred, with roles and stages overlapping, requiring tools that can support different ways of working
- 5There is an open question around how much of a specification can be inferred versus needing to be explicitly coded
Topics Discussed
Frequently Asked Questions
What is "Taste is your Moat (Dylan Field of Figma)" about?
The episode discusses Figma's journey from focusing on helping designers bring their ideas to life, to now expanding into tools like Figma Make that aim to bridge the gap between design and code. The guest, Dylan Field, shares his early exposure to AI and machine learning, and how he sees natural language as the current interface for exploring the creative potential of these technologies. He also touches on the evolving nature of the design and development process, with roles and stages becoming more blurred, and the need to support different ways of working.
What topics are discussed in this episode?
This episode covers the following topics: AI and machine learning, Design tools, Design and development process, Natural language interfaces, Figma and Figma Make.
What is key insight #1 from this episode?
Figma's initial mission was to close the gap between imagination and reality for designers, and now Figma Make is expanding that to a broader audience
What is key insight #2 from this episode?
Dylan's early exposure to AI and machine learning through conversations with mentors and colleagues sparked his interest in the potential of these technologies
What is key insight #3 from this episode?
Natural language is seen as the current interface for exploring the creative potential of AI, but Dylan envisions other more intuitive interfaces emerging in the future
What is key insight #4 from this episode?
The design and development process is becoming more blurred, with roles and stages overlapping, requiring tools that can support different ways of working
Who should listen to this episode?
This episode is recommended for anyone interested in AI and machine learning, Design tools, Design and development process, and those who want to stay updated on the latest developments in AI and technology.
Episode Description
Dylan Field (CEO Figma) on how they are letting designers build with Figma Make, how Figma can be the context repository for aesthetic in the age of vibe coding, and why design is your only differentiator now. Full show notes: https://www.latent.space/p/figma 00:00 Figma’s Mission: Bridging Imagination and Reality 00:56 Becoming AI-Pilled 07:44 Figma Make 08:57 Language as the Interface for Design 13:37 Source of truth between design and code 18:15 Figma as a Context Repository 21:30 Understanding and Representing Design Diffs through AI 24:20 Figma’s Role in Shaping Visual Aesthetics 31:56 Fast Fashion in Software 36:04 Limitations of Prompt-Based Software Creation 39:43 Interfaces Beyond Chat 42:12 Lessons from the Thiel Fellowship 44:58 Using X for Product Feedback 48:10 Early-Stage Recruiting at Figma 53:11 Positioning Figma Make in the Prompt-to-App Landscape 55:19 Digital Scarcity & AI
Full Transcript
Hey, everyone. Welcome to the Lidl in Space podcast. This is Alessio, founder of Kernel Labs, and so happy to be at the Figma office today with Dylan Field. Welcome. Thank you. Thanks for having me on the podcast, and welcome to the Figma office. Yeah. You know, we almost couldn't choose where to do this because there's so many beautiful spaces in it, but we finally title it with this corner. Super excited to have you on today. I was reading through some of the history of Figma. And your initial mission was, you know, to close the gap between imagination and reality. And if I heard that today, I would assume it would be the slogan of one of the Vype coding platforms. And so maybe talk about what was like the first we should take AI seriously moment where you were like, okay, imagination to reality in the first phase of Figma was like helping designers bring what they had in their mind into a canvas. And now with Figma make, you're obviously moving to a much broader audience. So what was the journey to get there? Yeah. I mean, I think if you go back far enough, AI showed up in different forms for Figma. So I had the chance to be on the data science team at LinkedIn as an intern prior to working at Flipboard and getting more into design and then starting Figma. And we were doing a lot of more classical machine learning approaches. And I was kind of absorbing that. And there's plenty of discussion about agents back then with my mentor, Pete Skomrock, and thinking through, okay, what might it look like if some of the ideas from the 90s were to resurface? And, you know, those were just kind of like fun, geeky conversations that were pretty abstract, because obviously the role wasn't there yet. And then back at Brown with Evan, my co-founder and our original CTO, who's no longer at Figma, but an absolute legend. I mean, just check out his GitHub if you're not convinced of that. He and I were talking a lot about some of the stuff we're starting to see as sort of ML and computational photography approaches to doing image editing and what could be accomplished with that. So for example, there were papers being written about how do you use internet scale data to complete scenes and make it so you can basically do the equivalent of like content-aware fill, but instead of doing it in an algorithmic deterministic way, how do you do that based on the entire internet? And we thought that was like a pretty fascinating concept. And there's a professor at Brown who was doing some cool research in this area. We also were getting very excited in the early days of Figma before we even incorporated about stuff like how do you turn a 2D image into a 3D scene? So more computational photography, you know, plus on blending and some of these early techniques that you kind of get like 85% of the way there to something awesome, but not 100%. And it wasn't until, you know, we really had deep learning that you could get to 100%. But all of these individual demos that we're able to work on, and by we, I mean, mostly Evan, he's the real genius in the equation here. But as we started to explore a bunch of these areas, it just felt like there must be some way to make creation easier. And so that's why it's, the vision was stated as idea to reality and not like idea to X as a subset of reality, because we thought actually you could do this for a lot of different areas. And I still do, but we're starting with a data product. And fast forwarding to today, Figma Make, for example, we're really trying to make it so that you can go from idea in your head to actual ship product as fast as possible. and that might take the direction of an internal prototype to explore different ideas. It might be an internal app that you're using. I've been supporting some work on random data munging that I was using to make for it, which is kind of fun, rather than write a Python script. And it's, I think, very exciting to think about how far you can help people go and how you can make them both more productive but also help them explore more of the option space of design with some of these techniques. And then, of course, we're also excited about what that means in Figma design as well. How do you prompt to edit, prompt to do generation, and do it in a way that's consistent with everything else that's in your design system, the patterns you're already using? And how do we actually infer from what's already inside of Figma what you want to do and really be expansive in the way that we understand your intent. So you have a background in, obviously, math and CS, and now you run Figma. So you have this kind of duality of aesthetics and code. Were you first AI-pilled by the image generation, kind of more creative things? I think early on in the podcast, most people would say MidJourney was their favorite AI product. And another half of people would say GitHub Copilot. What was your first product that you fell in love with, with AI? Not a product, but my first AI-pilled moment. was, I think it was like 2014 or so, maybe a little bit earlier. I was a Teal Fellow. And in my class was a number of amazing people, but one of which was Chris Ola. And Chris and I would be going to these retreats together for the Teal Fellowship every, you know, three to six months. And I remember one of them, Chris had been working on some cool, like Haskell 3D generation stuff. And it was all a bit like out there and not clear how it would be productized. At some point he was just like deep learning. No nuts. This is the future of everything. And I remember him sitting down with me. We were at like a wooden table outside in some like Santa Cruz, you know, nature setting. And he's on the wifi, which is super slow connecting to AWS. And he's like, look at this. I can go on AWS and I can spin this up and I can train this like tiny neural net to classify, you know, header and digits. I'm like, Chris, this is like a solve computer vision problem. Like, why are you excited? And he's like, no, you don't get it. It's a neural net. And there's like hyper parameters I can tweak in my, I think I can actually make, you know, another neural net to like figure out how to tweak the hyper parameters. And I'm like, oh, that's all great. But like, this is a solve problem. And I lacked the vision at that point to see where it was going. But it started to get me to pay more attention. And then watching his work when he was at Google, some of the great blog posts he was doing, as well as starting to listen in on more of people around me and the conversations that were happening around AI and machine learning, got me more and more excited about where this might go. But I don't think I truly internalized scaling laws for quite a while longer and what that could mean. But I think GPT-3 was probably the first time that I was like, wow, the delts between this and past models is so great. Something exponential is definitely happening here. It's not just like hype. And then, you know, plenty of conversations around that time with other AI figures that we both know well definitely started to make me think, okay, there's something very important to focus on here. But I think it's very different to be in a context of, you know, more deterministic software building than AI research. There are completely different motions of how you kind of run those teams in those areas. And so it definitely took us a lot longer than, you know, starting at, okay, GPT-3, amazing, to get to the point where we're starting to ramp up and push the boundaries of what might be possible at Figma. No, that's great. And yeah, I would say Figma Make is one of the maybe most impressive releases I've seen this year. I was playing around with it the last few days. I built a Figma clone in Figma Make, so you guys are cooked. You let us replace it. Exactly. Or are you so back? I don't know. I know. I don't know. It's so hard to keep up. It depends on the day. tomorrow that might change. But to me, there's this interesting triad in software engineering, which is like you have the tests, you have the spec, and you have the code. And usually, if you have two of the three, you can generate the third. I'm curious how you think about the Figma model, so to speak, the almost Figma data model. You have Figma design, which is where the visual work happens. Then you have Figma make, which is basically, in my mind, the bridge between the design and the code. And then you have the Figma MCP, which is like, how do you bring that into code in a way that it's not even UI driven? It's just like the model is kind of doing the work for you. Does it feel like it's changing in a way the tools that you need to build? And how do you think about, yeah, you mentioned using AI for like, you know, editing the design and whatnot. Do you feel like natural language is becoming more and more the interface, even in design, that the work is going to be done? Or, yeah, what are like the pieces in your mind? Yeah, lots to unpack there. I'll start with just the, is natural language the interface? Yes, right now. I've said it before, but I really believe it. I think we'll look back on this era as like the MS-DOS era of AI. And the prompting and natural language that everyone's doing today, I think is just sort of like the start of how we're going to create interfaces to explore it in space. So I'm just like, cannot wait for an explosion of creativity there. Because I think of these models as like they're almost like a n-dimensional compass that lets you explore this wild, unknown fog of war in latent space. And you can kind of push the models in different directions through natural language. But if you have a more constrained end there and you're able to dimensionality reduce a bit so you can push different ways, there should be other interfaces available than text. These might be more intuitive, but they also might be more fun to explore. And I think sometimes constraints unlock creativity in ways people don't expect. So I'm excited for that. But right now, yes, natural language is where we're at. And while I'm excited to push that forward, meet people where they are, I think is usually a good model for product development before you get to the point where you've really refined. Going back to your triad, I think maybe we can start with the spec. like i think the notion of the spec is evolving so much right now and what should be in a prd versus what should be in design versus what should be in code that is i think much more blurry than it used to be used to be that we had obviously this like very kind of waterfall-y process of oh yeah we're gonna go gather some requirements and then we're gonna go you know make a big doc and then we're going to go make some designs and we'll code it up and we feel it's ready. Maybe you go repeat a few times, but it was a process. And I think with Figma, you can absolutely follow that process. But also, we recognize that roles are blurring, stages are blurring. And as all that blurs, how do you actually support different ways of working? You might want to make a prototype as part of or in place of, you know, a PRD. You might actually want to focus more on the design as a high-fidelity descriptor of what this could mean if the cost to make design and to create designs is lower. And I think that the more that you can kind of expand that option space for people and bring them into a surface to align design and visual fidelity might be the place where you actually can align best. And there's also the question of, okay, how far can a spec get you? And why is a spec different than code? So if code is the complete spec in terms of it is the most determined, clear way to show intent of which to happen every edge case, well, how much of that can be inferred? I think that's an open question, but one that we'll all be thinking a lot about soon. And if you think about sort of the value stack overall, it feels to me that the better code generation gets, the more design matters. And the more that actually the human pushing on design matters too. Because even if you have a good starting spot from your design system, from, you know, AI generation, whether it be code or image, you, I think, need to push design forward, not just as an individual screen, but as a system in order to actually compete, differentiate, and win. It's been our thesis for a long time, design is a differentiator, but I think it's even more true in this world where we're at now, where the rate of software creation is going exponential and maybe even vertical. and in that world you have more software there's more competition so what wins well it's brand it's point of view it's taste it's craft it's design and i think that's if that's the world we're headed for which i'm very confident it is then it's not enough just to use ai to generate an outlet i think you have to push further than that and really get in the detail into the craft in addition to utilizing AI to explore the option space faster so you can go as deep as possible in the direction you choose. Yeah, you know, I only have the pro plan, so I don't have Code Connect. But I'm curious how you think about that. Because Code Connect, the whole idea in my mind was like, hey, instead of having to make sure that the code stays in sync with the design, we kind of build this bridge between the two. But now if you have the design, you can, in theory, every time regenerate the component anyway. So why add, you know, maybe this additional layer that before was there is not needed anymore? To me, that's the most interesting thing. I was like, what's going to end up being the source of truth? And what are like the two-way bridges? So for example, when I'm Figma make, I use the MCP to bring that code into cursor, my actual code base. But there's no way yet, I'm sure you'll do it, for the MCP to write back into the design and say we actually ended up implementing it this way. I'm curious where you feel like the center of gravity is going to be. Obviously, you're biased in a way, but as an engineer, I'm curious your thoughts. Yeah. Well, first of all, just kind of explain CodeConnect a bit more. So to expand on what you already said, I think there's different situations that you might find yourself in. So you might be going to zero to one, making a prototype of something that's rather disposable. You might be actually working on a personal project where you're not making something that's disposable. you're building on something that's existing, but the code base is small. It's pretty clear what's going on to you. And there's not a lot of patterns that exist. Or you might be in a pretty large code base where there's a lot of existing patterns, a lot of code, and you're trying to fit those patterns. So especially in that last example, I think as you get to these larger code bases and larger sort of settings inside of companies, is it very important to be consistent with existing patterns in the code but also it important to create a design system where you able to create consistency at scale for designers and make it so that people are more efficient so they not always recreating different buttons etc There's the world of Figma in design, and there's the world of code, and there are advantages to having a source of truth in Figma and a source of truth in code. So in some cases, we look at libraries that customers make, and they are one-to-one. The design components perfectly reflect the code components, so the components of the code base. In other cases, you're working on the thing that's next in Figma, and that's not yet all built out in code. And both cases are important. In the case where you are one-to-one, and there's more of that bijection between components in Figma, components in your code base, you want to define a formal mapping. So that way you're able to give context via MCP, make it so that developers are easily able to implement a design on the front end, and CodeConnect serves that goal. We're doing a lot of investment to make it easier to set up because right now it's too much of a pain, but also trying to get further in terms of how many people can use CodeConnect. And in terms of where the source of truth lies, I think there's a variety of ways it will probably play out in parallel. I think that it's okay if, for example, in some times that code is source of truth, and you'll see us do a lot of work to make it so that you're able to bring your code-based design system into something like Figma Make or Figma Design. But also, if you're wanting to rapidly iterate and be able to express and try out different visual explorations. And if you think visually, if you are someone who's not necessarily maximal comfort with code, I think a visual surface is very important as a place to explore. And I think there are different modes of thinking, and it might be the case, I think it's likely the case, that the visual sort of metaphor is easier for a wider set of the population to grok than to go into code. I also think that it's going to be something that as we move forward in time with more agents writing more parts of your code base, you will also be less familiar with the code. And so then you might want a different abstraction where you're able to work on things and basically plan out what your app should be, what your software should be, and Figma can provide that. Yeah, I almost think of Figma as like the context repository for aesthetics. To me, it's almost as an engineer, right? The design product is not even that useful in a way, as long as you can generate the components and I can do small tweaks. And I think one of the big tailwinds that Figma has is, you know, pardon the pun, but like Tailwind CSS, bringing a lot of this more like, you know, classes, name classes as like a way to define style and the way the figma variables and you know the the way your system is is set up for me it's been once i saw figma make i'm like okay now now i get it before when i had the blank figma canvas it's like i'm not talented enough to start from here but if you can build an initial thing through ai then i'm good enough to like tweak it and then have that be now the bridge and then i can take that in clock code yes i can take that in cursor or maybe i'll just say figma make forever and like the prompts just go there yeah i think that what you're saying is super important as a point um the blank canvas problem is real we're always trying to figure out for figma design how do you make it less intimidating for someone to come in how do you make this more approachable and there's always tension between the power users of figma design who would like every single power feature that you can imagine you know why can't you make a feature for like everything in the CSS spec. And, you know, of course we can over time. On the other side of it is, okay, you've got someone coming in for the first time, technical, non-technical, whatever. Are they intimidated? Do they feel invited to go create something? And the first, regardless of our UI, the first thing that can block people is that blank canvas. So getting people from the place of, you know, I have an intention to actually putting something on that canvas is so important. And I think once you start getting people in that loop, then it's less intimidating. You have more that you want to explore. One of the things I'm excited about that we just actually shipped today is a way to copy designs from Make into Figma Design. And if you think about Figma Make as a just easier entry point for figment design you know it's like uh the flight simulator to the airplane cockpit or something then perhaps you're able to make it so that uh that's an early entry point you go through and then you actually can do more than just tweaking components but actually visually manipulate a design and you might find that you actually can go faster that way than if you're doing it in code yeah i think i i don't know what your model internally is between of diffs but to me it's like it's easy to communicate what a diff in code is but it's kind of hard to communicate in design in a way that i can then put into a llm to like apply so i'm curious how you think about that it's like there's obviously the design is more than the components right it's like if you just took any piece that is in figma individually doesn't look like anything then when you put them together it looks great how do you see the way people will communicate the sign also change now that more of it needs to become language because of the interfaces. Yeah, I think that I might push back a bit on the more of it becomes language part, but maybe we can explore that later. Depends on exactly what you mean by that. But in terms of the way that we represent diffs, you can go to version history in Figma and see sort of composites of diffs. You can make a new version at any point. And of course, internally, there is the journal of every single edit. and I think there is opportunity there to your point around how do you basically use not just what's in figma design as a source of truth but also the tool calls that made via mcp and when they were made to understand what is the context that's changed since I last made a call so that's an opportunity that I think is a smart one to point out but also I think it's just interesting to think about the journal data and what can be possible in terms of thinking about what you might do next, how to help you be more efficient and help you explore more ideas. Yeah, my language, natural language part is if I give a LLM a GitHub protocol, it can understand from the code what type of changes I've made. I'm trying to figure out, and this is just because I'm not a Figma power user, if I gave an LLM a Figma journal or diff, could it understand aesthetically what has changed to then update maybe like other docs or like parts of my system? Yeah, right now that's not there. I think it's a really good idea. And I think it also mirrors other ideas that are going to be important too. For example, if you pull in Figma context into your ID or your agent, whatever format it takes, let's say that the design is not perfectly implemented because currently that's where we're at is a lot of times it's, wow, this is a great start, but there's more work to do. Well, what's the delta? How do I get to the point where it's perfectly implemented? And that requires some back and forth too. Yeah, the only, when I did the Figma to cursor, the only thing I got wrong was the border color. Everything else was perfect. I'm glad to hear that. That's awesome. I was very impressed. And to be clear, some of the time it does just work. Well, yeah, no, exactly. And it's like magical. And by the way, I'll point out, that's not like a comment on, oh, front-end engineering is dead. There's so much more to front-end engineering than just that translation step. That's kind of like the most mechanical part. And actually thinking through all the states, all the intended behavior, and how to make the design truly come to life, that is a lot of the interesting work. And I'm excited for how interfaces will get much more rich and much more interesting as we make it so that they're easier to go from design to code in that first place. That's just the first state. Right. Yeah, when we had Greg Brockman, we talked about these purple and blue gradients kind of taking over the web because of all this training data. Do you feel a sense of responsibility in a way in Figma make also to set the new standard for what things should look like? And how much do you think about making that explicit for the user right on? It's like, hey, I'm actually not going to, you need to make some aesthetic choices early on. Yeah, I feel very strongly that across the Figma platform, we should do our best to find ways to help people explore more of the space of aesthetic rather than impose like a personal viewpoint on aesthetic. That's a hard problem. But if we can accomplish that, I get very excited because if you can actually open that space up more and figure out how it applies to software to product design, then not only could we be in a place where we help you generate high quality visual output, whether you're a trained designer or not, but also we could get to the place where you could be nudged into or nudged yourself into different directions that are underexplored relative to the design. community and design history. As you know, it's like there's an ability to interpolate between different styles, different ideas, and AI can help you do that. But also the designer can then take that so much further. Yeah, I think regurgitating the median website is like, you know, maybe that's where a lot of us are today, but where we need to get to is one is a place of really pulling out new styles. And I think overall, the other thing I'd say is, you look back at the Flash era of the web. We both grew up through that. And it was maybe not always high quality, but dynamic, exciting, fun. This was an era where experimentation was happening. And then we, at some point it was like, okay, Steve Jobs gets up on stage and goes, flash is dead. You know, here's my new world. And, you know, brief skeuomorphic phase, then Swiss minimalism. And we've all been Swiss minimalism for quite a long time now. And I just think that, again, going back to, okay, more software career than ever, what needs to happen? Well, designers need to push us forward. And that's going to mean a exploration and explosion of creativity and so many different visual styles that will be explored so much more dynamism in interfaces and new patterns emerging, especially as you start thinking about what are all the screen targets we're going to have. Those are going to explode too. And states, you know, all the different surfaces that will be created and designers will have to think through systematically. That's a big challenge, a big opportunity as well. Yeah. I started, you know, Colonel Labs a month and a half ago and James, our designer, I've been working with him on our initial landing page and our product design and he's almost like my latent space shepherd you know it's like even if i had even if figma was agi i still wouldn't necessarily know what to ask for you know i think that's like really what people a lot of time get wrong which is like software it's like the same thing it's like you could give a software agi to anybody and like doesn't mean they could build great software you know i think to me that's the most exciting thing but what i really like is then the ability now that i have to like reuse this across surfaces in a way that wasn't possible before because I can create ideally in Figma, not my design system, but now you have make to generate all new types of products. I have the NCP. You also have slides. You have different products on the other end of the spectrum. And again, going back to being the context repository of aesthetics, I know that as long as I have the context from Figma, whatever the AGI or whatever I'm talking to is going to generate, it's going to have some sort of rooting in what I think looks good. Yes. I think some people will have it personally. I think some people should have some sort of like personal stigma almost. Whereas like, you know, when you're generating images on 10GBT or majority should have some sort of like aesthetics to draw from. How do you think about that evolution? Because you're going from a world where like only designers work on your product and now it becomes a core part of like a lot more constituents. Yeah, I think in a world where design is the way you win, it's only natural that we need to get more people involved in the design process. That is not going to diminish the role of designers. In fact, I think it expands the role of designers because then you have to shepherd people through the design process and help them go from, okay, I mean, it's kind of a journey you go on, right? Like not even being aware of design, you know, kind of like blindly going through the world to, oh man aesthetics uh they they matter to uh okay can we make it pop can make it cool and then people start to actually think about it well wait a second like i'm looking at one screen what's the actual experience here what is the entire flow and then it's okay well let's take mental models of how we can think about this experience and consider it in different ways what are the the potential different paths, metaphors, and experiences that we can create here. And what are the abstractions that matter? And then from there, it's like, okay, wait a second. Well, this all exists in the context of our brand, the greater culture of the moment, and business constraints, and all sorts of other things you might be optimizing for. and I think more people coming to the design process that can help add in context as well and there's no reason why someone who's outside of design or doesn't call themselves a designer whatever they identify as engineer, product manager, CEO, whatever everyone should be able to come in and say okay, here's an idea and the idea hopefully could be parsable in high fidelity to the standards of at least a design system and consistent. So it's not distracting because an idea should be evaluated on some merits. But then I think from there, the actual exploration and making that great, that is a hard design task still. So how do we lower the floor for everyone coming in but also raise the ceiling make it so designers can do even more and produce even greater work I think like I mean obviously you know it cliche like everything is changing right But I think there's just like a fundamental shift in both how people perceive software. I think, you know, Sam tweeted, some moment tweeted about the fast fashion era of SaaS. But there's also like a negative connotation to fast fashion. but i feel like in software it's like man if you can get the software that you need at any moment that's not a cheap thing that's like an expensive thing that is now be made cheap and it's like still high value and i'm curious like how different products are gonna drive that even though it feels like hey i just created this for you very quickly but like there was so much that went into that you know that it's like maybe sometimes undervalued you know so i'm curious like if there's something that you think about where, okay, in a way people should come to Figma and do a lot of work, but maybe in a way we can kind of help you from like all the work you've done in the past, kind of like come to the right result much faster in the future. Well, I think especially in the context of teams where there's, you know, they've done a lot of work in Figma, of course there are patterns that with that team's consent you can tap into and figure out how to help improve outputs. but I do have a little skepticism about the like fast fashion interpretation. I just think that there's, uh, where we're currently at at least with the models. And, you know, of course we're on this trajectory, whether we're on an S curve or an exponential, or it's an S curve that'll turn into an exponential. Uh, I don't know, maybe you've got a point of view. Uh, but I was kind of like, okay, uh, I'm excited for the ride. And as long as I'm here today, well, my mental model and strategy is just like, your strategy should always be okay. Assume AI models get better and make sure that makes Figma better. As long as I believe that's true, I'm happy. If not, change strategy. That's the algorithm. But wherever you're at, I think that in terms of that interpretation of where models are going, I don't think the world is in a place today where the fast fashion era is here. And I also think that so much of designing software is doing it in a way where many people can use it. Like it's rare, I think, that you've got an individual piece of software that is truly just for you. I think it's awesome that more people are exploring their ideas and creating software and tools for them. But then the next step, if they want to go further is, okay, how do I make this good for other people too? And in a setting where people are trying to learn software, most people learn it from other people. So now you're in the same place you were before. You had a piece of software, you made it just for you. You decided it actually supplies to other people the problem that you solved. Now you got to have something that is probably consistent enough to actually share with others so they can learn it and it gets adopted. And so I don't know. I think it's like, yes, more people will create software. That's awesome. But also, I'm not sure that software will just be like disposable. and if you look at the way that people work whether it be with cloud code or cursor or warp or whatever so much right now is like you said you need to have some expertise about how software is built that lets you discretize the tasks just like you would to an intern and you know maybe it goes beyond intern level but still i'm not saying okay go build figma and you agent are just gonna go figure out all the complexities of Figma. I think that's just not something I see happening in any near-term future, even as longer-running agents start to occur and we've got better capabilities. That's a long ways out. Now, maybe that's a high bar, but you look at the actual workflows that happen with the very big SaaS applications, let's consider Workday, for example, or Salesforce. A lot of CIOs would love to go, okay, yeah, I've a vibe-coded Workday, and I just saved my company all this money or whatever. But okay, you actually peek under the hood of a Workday or a Ripling. These are very complex pieces of software that have accounted for every edge case that you can run into as you're thinking about your HRIS and the platform of data that you can tap into and then go build out from there into different workflows. And they've done that through, you know, over, in Workday's case, decades. In Ripley's case, you know, not quite a decade, but also a lot of prior knowledge about what needs there are in the market. And very intentionally built. So I'm skeptical that, like, without that knowledge of the workflows that people will encounter, people will actually make something that can scale. I think you run into the same problems that you've run into all along. And then it's a loop. Maybe that loop goes a little faster, but it's not just going to replace. I think that's the bull case for software still being helpful post-HGI, whatever that means. Because in a way, you still need to prompt the HGI. And I think you're going to end up having these interfaces that, again, just like you're going to help people explore the Lydian space in design, there's going to be a way for interfaces to like compress the way that information gets passed through the system i think in data analysis you're kind of seeing a lot of the applications kind of going away in a way because the models are like so good at it and it's so natural to do on a conversational level but again sometimes it's like well how do you give it the right data how do you ask for the right type of charts how do you ask for like the right follow-up questions i think there's like a good question of at what point is a software a piece of software at which point it's just like again a latent space guide that just helps you project your interest into the model yeah and it's it's interesting it's like if you look at data analysis maybe break it up into a few things they have to go right you need to have first of all trust that the right queries are being written in the correct way and that's a lot of trust because if you get that wrong you know you have a bad shaky foundation for the rest of your experience and there's okay what's the next query i'd probably be more bullish about ai predicting a next query or a follow-up than i am about like you know 100 rate on the query being constructed correctly um and i think if you were to show people some prompts around here example next queries you might want to run that might spark other ideas they have for follow-up questions that further their analysis but there's also like how do you display the data and the visualization itself? Yeah, there's canonical visualizations we're all used to, but I think visualization is fascinating and we've only scraped the surface in terms of how we can visualize data. I think that especially to get to larger data sets, more complexity, and you're really trying to communicate data to people, that is one of the most interesting design problems out there. Like how do you communicate how much money in the budget of the federal government is spent where? People have tried so many times. I've never seen something that is clear and actually gives you any sense of scale that you can relate to. And how do you communicate the data inherent in biology to a layman person who hasn't studied biology? Again, people have tried. It's a very hard problem. And maybe you break into sub-problems, But still, there's so much to push on there. Yeah, yeah, yeah, exactly. There's almost like the two ways. So like me, how do I communicate to the model what I need? And then there's also the other side, which is like the models have like so much imbued into them that we need to get out of it that we don't quite know how to do. And like one part is like information communication. You know, one part is like once I prompt it, how do I get the response in a way that I really parse? I think, yeah, that just like, I don't know, it's been breaking my brain for the last few months just thinking about what will feel like software what will feel like a conversation and like i know that obviously open ai you know it's like this big goal of like kind of being your companion and like you have the voice mode and whatnot but at some point you just need something that is beyond component rendered inside a chat interface you know and it's hard to figure out especially when you think about i know you do a lot of angel investing so i'm also curious about how you think about startups and like what kind of products are like now possible that maybe you wearing before? Like what products people should stop pursuing because you think will be a part of the models? First of all, I'm hesitant to give advice on that because first of all, I think that the idea that all software will, or lots of software will exist in a session with an LM or any model, I think that's a little overblown. There's so many different ways this could work out, whether it be, you know, kind of a back and forth of the model as an origin, of a request and then you go elsewhere to the models embedded in software, but you still have a destination you go to first is not the model. And we can think of many other ways too. I think that that's maybe a bit of a shaky assumption. And then also I think that people, it's often the case that you've got some space that like a thousand people are starting a thousand companies and everyone's going, oh, don't go there. It's too crowded. But then one person comes up with some really new, clever idea. And it's a totally different take and they propel from there. So I never try to say don't do something to an entrepreneur because somebody that's listening to this podcast is going to have some ego insight in some space that both of us think is really dumb to work in. But then they'll be the next trillion-dollar company. uh so uh and you know of course like whoever that is you know let me know right yeah let us be a part of it let us both know um but but yeah i think uh there is some amount of memetics around like people see other people doing something they don't follow on and you have to have a unique insight if you're starting a company or working on a product it usually should be something that's unpopular right and this is just cliche advice at this point but like i think there's something deep to internalize there about the kind of contrarian nature. I'm going more teal language now, but I think he's basically right about this. I mean, as in, if you're investing in something, unless you're just going after momentum, which a lot of people do, but otherwise you need to have some point of view that like a lot of people would just blanket disagree with. And it should be scary to you if you're investing in something and you tell your friend about it and you say, here's my point of view on why this is really cool. And your friend is like, oh yeah, I totally agree. It makes complete sense. That should be a warning sign if you survey people and they're all saying the same thing about that. Yeah. What have you learned about yourself during the Teal Fellowship? What are like things that you change about how you approach, yeah, just life, thinking, learning? I think whether it be that interaction with Chris Ola where I look back and go, man, I maybe dismissed that one too soon, and then learned over time, thankfully. Or another example is I think in 2013, there was a Bitcoin hype cycle. Bitcoin went to $1,000 or something. And half the Teal Fellows at the time were really excited about Bitcoin. I'm just like, these idiots, how do you short this thing? And that was my default reaction. And I think that the overall meta lesson that I've learned over not just the Teal Fellowship, but just being around tech for a while now, because I was paying attention even as a kid. I was in some commercials that were like for, you know, Microsoft and eToys, for example. And so then I'm starting to track like, what's this.com bubble? And wait, why am I not getting residual checks anymore? That became, from a monetary standpoint, I'm like, I'm going to read the newspaper. And then working in high school at O'Reilly Media was a great point to get exposure to some of the starts of cycles, GL Fellowship. And the middle lesson I think that I've learned is don't look for reasons why things are not going to work. That's important too, but it's not the place to start from. the place to start from is like, what could this be? How big could this be? How important could this be for society? And let yourself imagine, dream, and then go and think about all the ways it's not going to work. So you can mitigate each one, but like start with the dream. And I think if you start there, it's just a better default position to go from. Yeah, I'm really worried about the X algorithm and what it has done to optimism because it's so easy to get likes just being negative about things. I do think the X one seems to have changed a little bit recently. Yeah, maybe Nikita's in there. Yeah, I'm thankful for that. But yeah, I do think algo feeds reward controversy and being negative is a way to get controversy. But also, I don't know, I'm default optimistic. I feel like society just builds antibodies to different things over time. I mean, remember when we were all worried about, like, oh, my God, everyone's going to be a zombie playing Farmville all day? Like, well, here we are, you know, and some people still play Farmville. But, like, it's, I don't know anyone that does that, like, you know, all day long. And most of us kind of forgot about, you know, the social gaming era. I know. So when I drive by the Zynga building, I'm always like, I remember back in the days. Yeah. How do you use X? Because, I mean, you were famously on IPO day, responding to product feedback on X. What's your routine for staying on top of that? Oh, I mean, I try to just like search for Figma a lot and see what people are saying. But also I've like trained my algo feed to show me a lot of stuff that's relevant to Figma. And there were ways, I don't know if they still are as powerful signals with whatever algorithm shifts have happened. But it's like you kind of find out what signals matter. you know like ironically right not interested in this post seems to not do anything you know like or bookmark i'm not sure how much that matters but copy link turns out that really matters as a signal or at least it did so yeah i wasn't always sharing the link but i'd copy it whenever i saw something i want a signal boost in my feed it's like okay the more you learn as for the algo feed better you can train it better you can make it useful and then you know i think feedback across any surface, not just social media, but support, sales conversations, conversations in our community, we gather people together, and then just talking with folks, research both qualitative and quantitative. These are extremely useful signals for our team. And I think of intuition as like a hypothesis generator then you have to test the hypotheses So using feedback to be part of that test is important but also I always rather give feedback to the Figma team by surfacing the voice of a user rather than being like, I have this point of view. I'd do the latter as well. But the former is my preferred method, and so I'd much rather champion user feedback or a user bug report or a feature request and then dive in with that person, then just have it come from me. And the other thing is I'm always looking for those visionary users who are a step ahead of everybody else. They know just kind of intuitively what is needed. And I think that when you can find them and separate them out, that signal that is just amazing to get. I remember early days of Figma, There was this one user test that I literally brought a bottle of wine to because Figma was so slow yet at that point. I mean, like to complete the user test, I knew it would take hours. So it was kind of a tough one to administer. We went through the bottle of wine during the user test. And the person that we were doing the user test with is Gideon Payam, who's an amazing designer, then was working at Coursera. and the next day he followed up with like this super long doc. It was eight to 10 pages and it laid out basically a lot of what ended up being our roadmap. Not like we literally follow the doc, but I look back and compare contrast and yeah, he's an example of someone who was a visionary user. And for a person like that, there's a lot of people that will give you more local feedback, but some people can see the big vision too. and that's always really exciting because it's validation for you and the team about where you should go but also a source of new ideas and insights as well how did you think about hiring and building the team back then because i remember i was working at a yc company and we were all on sketch uh kickback okay um and we're all on sketch right and so i think a lot of people are maybe like well why isn't figma just going to be like sketch and blah blah yeah how did you figure out who are the right people to bring on the mission? Because I think the same thing is happening in AI, which is kind of like the, you know, the meme of what should be built. And then maybe there's like some more missionary people. What were some things that you think people should take on early stage recruiting, especially? Early stage recruiting is so hard. So first of all, just don't give up. Right. That's my first piece of advice. Second piece of advice is just think long-term. You know, there are folks that I talked with in the first year or two of Figma, and they didn't join until like year five, year six. But those relationships, it's amazing how if you're consistent and just spending time together with people you like, how eventually it turns into something that could be they join the company or actually just their friend outside the company, but someone that inspires you. And that's great too. But yeah, I think taking the long view is super important. Of course, you need conversion today. You got to hire. And I think the kind reality of being early stage and having a lot of risk is you have a natural filtering function. Only the true believers are going to get on board. And I'm a fan of just not selling too hard. It's like, make sure people understand what's going to go on and what's going to happen and where you're pushing and what you're going to do. but like if somebody needs to be sold so hard it's usually a sign they're not gonna stick around yeah i think you have to have a really good process um best recruiting advice i got in the early days yeah i told uh john doer one day that you know i was having a lot of problems with recruiting i wasn't very good at it he's like well do you wake up in the morning is the first thing you think about recruiting i'm like well no i'm thinking about like coffee like okay well then, uh, you know, it's like mid morning, like, are you thinking about recruiting? I'm like, no, I'm probably thinking about like what snack I'm going to have. I'm just like, okay, it's lunch. Are you thinking about recruiting? I'm like, no, I'm probably thinking about like what emails I got to do. Okay. It's like last thing, the last part of the day you're about to go to bed. Are you thinking about recruiting? I'm like, no, definitely not. I'm like tired. Uh, he's like, well, just like, if you're thinking about recruiting and all these moments where you just have a moment, have a second to pause and you're acting on it, then it'll fix itself. And the way that I think can manifest as a process is you just basically make a spreadsheet of, here's my funnel. And you obsessively look at it all the time and go, okay, like, how do I make sure that this funnel keeps going? Just like you would with sales. If you're a salesperson, you have to continue to feed the funnel you have to move people through it and if you're not doing that you're not recruiting so yeah you have to be very disciplined which is something that you know i'm i have to push myself to i like to kind of be in the clouds so definitely like to have coffee how has that changed now now you have like you know public company that you run obviously with make i'm sure you have to build a new team to kind of lead that how has that changed and also So this is a great call for recruiting for engineers listening. What are the type of people that succeed at Figma today? One thing that's been interesting is that, yes, of course, we've hired amazing researchers who are pushing the boundaries and thinking in a way that's on its own life cycle in terms of not as tied to, okay, we have an explicit date we're trying to release on because that's just not how research works. But what I've found is very good engineers who are just more full stack and oriented towards learning new things, they can be quite successful on AI products. There's some reorientation they might need to do. They might need to, of course, learn new skills, just like designers need to learn new skills. But in general, we're looking for smart, high agency people who have product sense, who care about design. who see the world the way that we do and want to learn skills and keep growing and work on hard problems. I think that's the filter that's always been the case for Figma. And if that resonates with people, then yeah, please apply. One question I have from Zach from Warp was, how do you position Figma make in the universe of this prompt to app, prompt to creation? How should people think about how you fit? Do they feel like competitors to you? Does this make just feel like an extension of the design team? What is the competitor universe for you? It depends on how you define it, right? I think engineers feel much more comfortable in IDE than non-engineers. And as we get to more agentic environments, perhaps that's a different vibe. But still, I think most people feel like an IDE or cloud code, if they're not engineers, they feel like that's not made for them. And I think that with the platform we have and the visual metaphor, the opportunity for freeform exploration and ideation on an infinite canvas and being able to try out lots of things and then also see the big picture of what are the different paths I can go down. That is a metaphor that I think works for a lot more people. And in that sense, as we tie Macon even further than just, okay, I can copy a state and put in figma design and tweak it, that's what we launched today. But there's so much further we can go. And the further you go, the more you're able to then, I think, bring more people into this sort of surface. So in that case, it's just like we're trying to brace against ourselves. I think if you evaluate make as it launched we raced towards launch you know as prompt to code and not a lot around that not a lot of integration with the platform then sure there's a million other tools and more coming every day that you can evaluate against but i don't know if that's the right way for us to think about it i was um listening to the brett episode he did and he had this one line that's just stuck with me which is he was talking about uh you know do you want to resell coffee beans as roasted coffee beans? Or do you want to like go make the amazing like special latte? Obviously want to make a special latte. Yeah, everyone does. But like, how can you make something that is unique and plays the needs of designers and does that in a way where we can really bring advantage to people? And I think there's so much we can do there. So many different tiers that are coming that I'm just really excited about. Yeah. Nice. I know we don't have too much time left. I want to just talk about some outside of tech. So you obviously have a CryptoPunk as your Twitter PFP. It's actually a Chainrunner, not a CryptoPunk. See? But it's okay. We'll go through NFT education later. How do you think about, in the digital world especially, like you're going to have this huge divide between scarcity and like, you know, abundance, right? How do you feel about the future of like these digital collectibles and like communities and like, yeah how that fits into the universe of like hey you can generate anything at any time you know enzo ferrari used to say a ferrari can never be readily available to be desired i'm curious how you think about the distribution of things people will see on the internet between the super niche tailored just created for you and like these kind of like iconic cultural properties the paradox of like digital scarcity is what made me excited about nfts before they're called nfts back in 2017 whatever it was and i i think that uh not everyone is like has that collector gene but some do and um for those that do whether they're whoever it is they're collecting digital items they're scarce and people will enjoy getting into whatever collector aspect they want there but i think in general i've i've found myself wanting to distance a bit from the NFT space. It's like kind of interesting and actually has some parallels, I think, to AI. And I got in it so early. And to that point, it was like this like just niche community on the internet of weird people that thought digital stuff could be scarce and you might want to collect it and pay real money for it. But it was not expensive. And so anyone, for example, in the States could be part of that. And it was gated more on just like, do you know about it? And do you get the idea of it? And is that idea exciting to you or is it repel you? And then over the next three or four years, it went from this very idealistic, let's think about what the future of creation and digital items and scarcity could be, to get rich quick, scams, and just sort of this overall vibe of flipping stuff and trying to make money And I don't know, just the whole meta of it changed. And that's when I peaced out. You know, I realized at some point, I was like, oh, I get excited about collecting some NFT project because I think the art is cool. I think that the creators are awesome and there's some intention behind the work that's unique. And then, you know, if I talk about online, like the project might do worse. Right. It might attract people to buy it and folks can, I learned, do scams where they basically pump and dump and create trading behaviors that are no good. And so I stopped talking about things I'm excited about for the NFT space. The parallel that I think is kind of interesting is you compare AI to that. And it's like, there's been a long era of people that I think are very on mission and thinking about the big picture, the risks, the opportunities, the possibilities. And that's kind of meeting in this moment, the get rich quick. You know, if you look on YouTube, there's a lot of people making videos about like, okay, how do you use AI to make passive income? And I'm not trying to dismiss that because great, if you can make money using AI, that's great for you. and some people certainly will but i think there's um too much just like do it because it's going to make you some money energy in the space right now that uh makes me like a little bit nervous having been through that nft cycle and seeing where it ended up that has been on you know i own a card store in san carlos so i do like magic the gathering pokemon and there's similar thing happening where like you know there's a lot of speculation just because everything is the gathering like super cool now it is oh fuck yeah well i've been waiting for this moment let's go we'll do we'll do a magic the gathering event draft night i'm down nice we used to have in the early days of figma we used to do draft nights nice yeah what sets were coming out then do you remember i don't remember okay yeah sorry there's a guy named andrew on our team and he wowed me so much with his expansive encyclopedic knowledge imagine the gathering that i was like wait a second like can we move you from support to product education uh and then he killed it at product education because he has just an encyclopedic knowledge of the group um and uh but yeah it was like basically magic the gathering draft night that gave me the confidence inside of oh wow like these skills are transferable so that's funny yeah magic the gathering career opportunity exactly you know i should go around i'm gonna play in the regional championship for the americas in november i should just go around and say okay you're going to the regional championship yeah let's do like really hardcore so i think to me that's like the best way to like disconnect because you have to be so focused on the game that like you're not actually thinking about things but there's kind of like obviously the collectible side but they're still at the core like a community let's come together at the store hang out play games and i hope that like that's what we'll see more out of ai which is like enabling more of these like small communities locally to like you know have more entertainment and like support themselves in a way that doesn't have to be oh is this gonna make money like it's gonna be profitable you know i think the more you can go from a mode of like i go on social media app of choice and mindlessly flip through my algo feed to i'm going and making things like that is good we want to move consumption behavior to creation behavior. And yeah, I think that will happen. I just a little nervous about the Get Rich Quick lives. Right, yeah. Awesome, Dylan. We'll have you for draft night at the new kernel space. Looking forward to it. But thanks so much for the time. Thank you. Thanks for having me.
Related Episodes

⚡️Jailbreaking AGI: Pliny the Liberator & John V on Red Teaming, BT6, and the Future of AI Security
Latent Space

AI to AE's: Grit, Glean, and Kleiner Perkins' next Enterprise AI hit — Joubin Mirzadegan, Roadrunner
Latent Space

World Models & General Intuition: Khosla's largest bet since LLMs & OpenAI
Latent Space

⚡️ 10x AI Engineers with $1m Salaries — Alex Lieberman & Arman Hezarkhani, Tenex
Latent Space

Anthropic, Glean & OpenRouter: How AI Moats Are Built with Deedy Das of Menlo Ventures
Latent Space

⚡ Inside GitHub’s AI Revolution: Jared Palmer Reveals Agent HQ & The Future of Coding Agents
Latent Space
No comments yet
Be the first to comment